Классификация и схемы подключения чиллеров 

Чиллер (chiller) – это водоохлаждающая парокомпрессионная холодильная машина. Холодильная машина предназначена для отбора теплоты у охлаждаемой среды при низких температурах, при этом отдача теплоты при высоких температурах является побочным процессом.



В составе холодильной машины несколько функциональных элементов: компрессор (от 1 до 4), конденсатор, электродвигатель, испаритель, устройство для расширения хладагента или терморегулирующий вентиль, блок управления.

Получение искусственного холода базируется на простых физических процессах: испарении, конденсации, сжатии и расширении рабочих веществ. Рабочие вещества, используемые в холодильных агрегатах, называют холодильными агентами.
Холодильные машины различаются:
  • по конструкции (абсорбционные, со встроенным или выносным конденсатором – конденсаторные и бесконденсаторные);
  • типу охлаждения конденсатора (воздушное или водяное);
  • схемам подключения;
  • наличию теплового насоса.

Виды чиллеров:

Абсорбционные чиллеры

Абсорбционные чиллеры

Абсорбционные чиллеры — очень перспективная область развития холодильной техники, получающая всё более широкое применение ввиду ярко выраженной современной тенденции к электросбережению. Дело в том, что для абсорбционных холодильных машин основным источником энергии является не электрический ток, а бросовое тепло, неизбежно возникающее на заводах, предприятиях и т. п. и безвозвратно выбрасываемое в атмосферу, будь то горячий воздух, охлаждаемая воздухом горячая вода и др.

Рабочим веществом является раствор из двух, иногда трех компонентов. Наиболее распространены бинарные растворы из поглотителя (абсорбента) и хладагента, отвечающие двум главным требованиям к ним: высокая растворимость хладагента в абсорбенте и значительно более высокая температура кипения абсорбента по сравнению с хладагентом. Широкое применение получили растворы вода-аммиак (водоаммиачные холодильные машины) и бромистый литий-вода  (бромистолитиевые машины), в которых, соответственно, вода и бромистый литий являются абсорбентами, а аммиак и вода — хладагентами. Рабочий цикл в абсорбционных чиллерах (см. на рисунке ниже) выглядит следующим образом: в генераторе, к которому подводится бросовое тепло) кипит рабочее вещество, в результате чего выкипает практически чистый хладагент, ведь его температура кипения гораздо ниже, чем у абсорбента.

Пар хладагента поступает в конденсатор, где охлаждается и конденсируется, отдавая своё тепло окружающей среде. Далее полученная жидкость дросселируется, в результате чего охлаждается при расширении) и направляется в испаритель, где, испаряясь, отдает своё холод потребителю и следует в абсорбер. Сюда же через дроссель подается абсорбент, из которого в самом начале выкипел хладагент, и поглощает пары хладагента, ведь мы выше обозначили требование их хорошей растворимости. Наконец, насыщенный хладагентом абсорбент насосом перекачивается в генератор, где хладагент снова выкипает.   Основные преимущества абсорбционных чиллеров:

  1. Идеальное решение для создания тригенерации на предприятии. Тригенерационный комплекс – это комплекс позволяющий на сегодняшний день, максимально снизить себестоимость электроэнергии, горячего водоснабжения, отопления и охлаждения для предприятия за счет использования собственной когенерационной электростанции в связке с абсорбционным чиллером;
  2. Продолжительный срок службы – в пределах 20 лет, до проведения первого капитального ремонта;
  3. низкая себестоимость вырабатываемого холода, холод вырабатывается почти бесплатно, т. к. асборбционные чиллеры просто утилизируют лишнее тепло;
  4. Пониженный уровень шума и вибрации, в результате отсутствия компрессоров с электромоторами, как следствие — тихая работа и высокая надежность;
  5. Применение холодильных/нагревающих агрегатов с пламенным газовым генератором прямого действия позволяют отказаться от бойлеров, которые необходимо использовать в обычных установках. Это уменьшает начальную стоимость системы и делает абсорбционные чиллеры конкурентоспособными по сравнению с обычными системами, в которых используются бойлеры и охладители;
  6. Обеспечение максимальной экономии электроэнергии в периоды пиковых нагрузок. Другими словами не потребляя электроэнергии для производства холода/тепла, абсорбционные чиллеры не перегружают электросети предприятия даже в моменты пиковых нагрузок;
  7. Имеется возможность объединения в паровые районные системы с эффективной холодильной установкой двойного эффекта;
  8. Имеется возможность распределения нагрузки в условиях максимальной производительности в режиме охлаждения. Устройство справляется с критической нагрузкой в режиме охлаждения с минимальным расходом электроэнергии за счет применения охладителей с пламенным газовым генератором прямого действия или генератора с паровым нагревом;
  9. Позволяет использовать аварийные электрогенераторы меньшей мощности, так как потребление энергии у абсорбционных холодильных установок является минимальным, если сравнивать их с электрическими холодильными установками;
  10. Безопасность для озонового слоя, не содержит хладагентов, разрушающих озон. Охлаждение осуществляется без использования хладагентов, содержащих хлор;
  11. Снижается до минимума общее воздействие на окружающую среду, так как уменьшено потребление электроэнергии и газа, вызывающих парниковый эффект и как следствие глобальное потепление.

Два основных недостатка абсорбционных систем — их размер-вес, а также их потребность в более крупных градирнях. Поглотительные больше и тяжелее по сравнению с электрическими чиллерами той же мощности.

Парокомпрессионные чиллеры

Парокомпрессионные чиллеры — это наиболее распространенный в настоящее время тип холодильного оборудования. Генерация холода осуществляется в парокомпрессионном цикле, состоящем из четырех основных процессов:

  1. Компрессии,
  2. Конденсации,
  3. Дросселирования,
  4. Испарения.

С использованием четырех основных элементов:

  1. Компрессора,
  2. Конденсатора,
  3. Регулирующего вентиля(ТРВ),
  4. Испарителя

В следующей последовательности: Рабочее вещество (хладагент) в газообразном состоянии поступает на вход компрессора с давлением P1 (~7 атм) и температурой T1 (~5° C) и сжимается там до давления P2 (~30 атм), нагреваясь до температуры T2(~80° C). Далее хладагент следует в конденсатор, где охлаждается (как правило, за счет окружающей среды) до температуры T3 (~45 °С), при этом давление в идеале остается неизменным, реально же падает на десятые доли атм. В процессе охлаждения хладагент конденсируется и полученная жидкость поступает в дроссель (элемент с большим гидродинамическим сопротивлением), где очень быстро расширяется. На выходе получается паро-жидкостная смесь с параметрами P4(~7 атм) и T4(~°С), поступающая в испаритель. Здесь хладагент отдает свой холод обтекающему испаритель теплоносителю, нагреваясь и испаряясь при постоянном давлении (реально, оно падет на десятые доли атмосферы). Полученный охлажденный теплоноситель (Tх~7 °С) и является конечным продуктом. А хладагент на выходе из испарителя имеет параметры P1 и T1, с которыми попадает в компрессор. Цикл замыкается. Движущая сила — компрессор.

Хладагент и теплоноситель

Особо отметим разделение схожих на первый взгляд терминов — хладагент и теплоноситель.  Хладагент — это рабочее вещество холодильного цикла, в процессе которого оно может находиться в широком диапазоне давлений, а также претерпевает фазовые изменения. Теплоноситель же агрегатного состояния (фазовых изменений) не меняет и служит для передачи (переноса) тепла (холода) на определенное расстояние. Конечно, можно провести аналогию, сказав, что движущей силой хладагента является компрессор со степенью сжатия около 3, а теплоносителя — насос, повышающий давление в 1.5–2.5 раза, т. е. цифры соизмеримые, но принципиальным является факт наличия фазовых изменений у хладагента. Другими словами, теплоноситель всегда работает при температурах ниже точки кипения для текущего давления, хладагент же может иметь температуру как ниже, так и выше точки кипения.

Примеры:

Компания Baltimore – мировой лидер в области разработки и производства градирен башенного исполнения объявила о начале производства новой серии сухих водоохладителей и выносных конденсаторов серии Trillium. Водоохладители Trillium – это агрегаты V-образного исполнения. Благодаря использованию высокоэффективных теплообменных агрегатов, оборудование характеризуется малыми габаритными размерами и низким уровнем энергопотребления. Выносные конденсаторы и сухие градирни Trillium опционально комплектуются регулятором скорости вращения вентилятора. Это позволяет более точно регулировать температуру воды или температуру конденсации хладагента. Также в комплект поставки может быть включена система орошения.

Компания Johnson Controls – мировой лидер в области разработки и производства высокоэффективных решений для систем центрального кондиционирования и холодоснабжения объявила о начале производства новой серии чиллеров с водяным охлаждением конденсатора, с центробежными компрессорами. Серия получила коммерческое название YMC ².
Особенностью чиллеров YMC ² является использование в конструкции компрессора в качестве опорных силовых элементов, электромагнитных подшипников вместо традиционно используемых подшипников скольжения. Благодаря такому подходу, чиллеры YMC ² характеризуются высоким уровнем энергетической эффективности и низким уровнем шума.
Уровень энергетической эффективности чиллеров YMC ² – на 10% выше чем у ранее выпускаемых моделей с инверторным регулированием производительности центробежного компрессора. Благодаря использованию электромагнитных подшипников удалось избежать негативного влияния силы трения и повысить коэффициент полезного действия компрессора. Кроме того в чиллерах YMC ² используются теплообменники затопленного исполнения с повышенным значением коэффициента теплопередачи, что также повышает общий уровень энергетической эффективности.
Функциональные преимущества чиллеров YORK, связанные с оптимизацией работы холодильного контура в условиях низких температур воды в гидравлическом контуре охлаждения конденсатора также остались неизменными в новой серии, что предоставляет широкие возможности по совместной работе водоохладителей и градирен башенного исполнения.
Также чиллеры серии YMC ² характеризуются низким уровнем шума. Уровень звукового давления агрегатов, при работе в условиях полной нагрузке при номинальных условиях эксплуатации не превышает 73 дБ

Классификация парокомпрессионных чиллеров

По типу установки:

Наружной установки (встроенный конденсатор)

Подобные агрегаты представляют собой единый моноблок, устанавливаемый на улице. Удобен тем, что позволяет эксплуатировать неэксплуатируемые площади — кровлю, открытые площади на земле и др. Также это и более дешевое решение. В то же время, использование воды в качестве теплоносителя сопряжено с необходимостью её слива на зимний период, что неудобно в эксплуатации, поэтому применяются незамерзающие жидкости, как новые солевые, так и традиционные — растворы гликолей в воде. При этом необходимо производить пересчет работы чиллера под каждый конкретный теплоноситель. Отметим, что все сегодняшние незамерзающие растворы на 15-20% менее эффективны, чем вода. Последнюю вообще трудно превзойти — высокая по меркам жидкостей теплоёмкость и плотность делают её практически идеальным теплоносителем, если бы не столь высокая температура замерзания.

Внутренней установки (выносной конденсатор)

Здесь ситуация практически обратная по сравнению с предыдущим вариантом. Чиллер состоит из двух частей — компрессорно-испарительного блока и конденсатора, соединенные фреоновой трассой. Требуются иногда достаточно ценные площади внутри здания, при этом по-прежнему необходимо место снаружи для размещения конденсатора, правда с заметно меньшими требованиями как по площади так и по массе. В чиллерах внутренней установки не возникает проблем с использованием воды. Упомянем и несколько большее энергопотребление компрессора и увеличенные потери давления и температуры хладагента в связи с удлиненной трассой (от чиллера до конденсатора), которая, кстати, также ограничена компрессором по длине.

По типу исполнения конденсатора:

Воздушного охлаждения

Это самый распространенный вариант. Конденсатор представляет собой трубчато-ребристый теплообменник и охлаждается бесплатным наружным воздухом. Это и дешево и просто в проектировании, монтаже и эксплуатации. Пожалуй, минусом можно назвать лишь большие габариты конденсатора в виду малой плотности воздуха.

Водяного охлаждения

Тем не менее, в ряде случаев используется водяное охлаждение конденсатора. В этом случае конденсатор является пластинчатым, пластинчато-ребристым или теплообменником “труба в трубе”. Водяное охлаждение заметно уменьшает габариты конденсатора, а также позволяет реализовать рекуперацию тепла. Но полученная нагретая вода (около 40 °С) не является ценным продуктом, часто её просто отправляют на охлаждение в градирни, опять таки отдавая всё тепло окружающей среде. Таким образом, водяное охлаждение реально выгодно в случае наличия потребителя нагретой воды. В любом случае, чиллеры с водяным охлаждением дороже, чем с воздушным, а вся система в целом более сложна и в проектировании и в монтаже и в эксплуатации. Классификация чиллеров с водяным охлаждением в зависимости от типа, используемого теплообменника испарителя и конденсатора:

С пластинчатым теплообменником. Пластинчатые испарители имеют малый вес, габаритные размеры, а также высокий коэффициент теплопередачи.

С теплообменниками затопленного типа. Кожухотрубные испарители более надежны, а также имеют возможность технического обслуживания и ремонта.

Классификация чиллеров с водяным охлаждением по диапазону производительности:

В зависимости от хладапроизводительности чиллеры с водяным охлаждением конденсатора подразделяются на агрегаты:

  • Малой производительности (Диапазон хладапроизводительности – до 150 кВт.).
  • Средней производительности (Диапазон хладапроизводительности до 400 кВт.)
  • Большой производительности (Диапазон хладапроизводительности: более 400 кВт.)

Внешний вид чиллера с водяным охлаждением конденсатора, производительностью 135 кВт.

Внешний вид чиллера с водяным охлаждением конденсатора, производительностью 166 кВт производства компании McQuay.

 

Внешний вид чиллера с водяным охлаждением конденсатора, производительностью 1472 кВт производства компании Thermocold.

Традиционно для охлаждения конденсатора холодильных машин применяются градирни, в которых вода, нагретая в конденсаторе, разбрызгивается через форсунки в потоке движущегося наружного воздуха, и при непосредственном контакте с воздухом охлаждается до температуры мокрого термометра наружного воздуха, поступая затем в конденсатор.

Это довольно громоздкое устройство, требующее специального обслуживания, установки насоса и другого вспомогательного оборудования.

В последнее время применяются так называемые «сухие» градирни или охладители конденсатора, которые представляют поверхностный теплообменник «вода-воздух» с осевыми вентиляторами, в котором теплота воды, нагретой в конденсаторе передается воздуху, циркуляцию которого через теплообменник обеспечивают осевые вентиляторы.

В первом случае водяной контур разомкнутый, во втором случае — замкнутый, в котором необходимо установить все необходимое оборудование: циркуляционный насос, расширительный бак, предохранительный клапан, запорную арматуру. Для предотвращения замерзания воды при работе чиллера в режиме охлаждения при отрицательных температурах наружного воздуха, замкнутый контур заполняется водным раствором незамерзающей жидкости. При водяном охлаждении конденсатора теплота конденсации также бесполезно теряется и способствует тепловому загрязнению окружающей среды. При наличии источника теплоты, например системы горячего водоснабжения или технологической линии, в период выработки холода возможно полезно использовать теплоту конденсации.

По типу исполнения гидромодуля:

Со встроенным гидромодулем

Чиллеры такой конфигурации представляют собой моноблок, в который включена насосная группа и, как правило, расширительный бак. Очевидно, что производители выпускают стандартные гидромодули чаще всего двух модификаций — с менее и более мощными насосами, которые не всегда удовлетворяют необходимым требованием (обычно их напора просто может не хватать). Кроме того, встроенный гидромодуль в чиллерах наружной установки будет расположен на улице, что может создавать проблемы зимой — незамерзающий теплоноситель может загустевать и в первые секунды работы насосы не способны преодолеть его вязкость и не запускаются. С другой стороны, нет необходимости искать место для насосной станции, продумывать её компоновку и т. д. плюс отсутствуют проблемы с автоматикой — это очень весомые преимущества встроенных гидромодулей.

С выносным гидромодулем

Выносной гидромодуль используется, во-первых, когда не хватает мощности встроенного; во-вторых, при необходимости резервирования (отметим, что во встроенных гидромодулях допускается один резервный насос); в-третьих, если по каким-либо причинам желательна внутренняя установка насосов. Система становится гибкой, а длина трассы практически неограниченной, ведь насосы бывают и очень мощные. В то же время существуют и готовые насосные станции, включающие в себя и насосы и расширительный бак и автоматику и компактно собранные на опорной раме.

По типу компрессора:

  • Поршневые компрессора
  • Ротационные компрессора 
  • Спиральные компрессора
  • Винтовые компрессора
  • С компрессором TURBOCOR 

 По марке используемого хладагента:

В зависимости от марки, используемого хладагента, чиллеры с водяным охлаждением конденсатора подразделяются на агрегаты, в которых используется хладагент R-22, R-407CR-410a, R-134a.

Хладагент, используемый в холодильном контуре чиллеров влияет на технические, эксплуатационные характеристики, а также стоимость.

По типу вентиляторов конденсатора:

  • Осевые вентиляторы
  • Центробежные вентиляторы

По количеству контуров циркуляции хладагента:

Внешний вид чиллера с водяным охлаждением конденсатора, в состав которого входит четыре контура циркуляции хладагента производства компании Clivet. В зависимости от количества контуров циркуляции хладагента чиллера с водяным охлаждением конденсатора различаются агрегаты с одним контуром хладагента, а также агрегаты с двумя, тремя и четырьмя контурами циркуляции хладагента. Каждый контур циркуляции хладагента может включать один или несколько компрессоров, водяной теплообменник испарителя, водяной теплообменник конденсатора, расширительное устройство (ТРВ) и другие элементы. Количество контуров циркуляции хладагента чиллера влияет на его эксплуатационные характеристики, надежность, а также стоимость.

Опции чиллеров

Фрикулинг — функция свободного охлаждения. Практически незаменима для чиллеров, работающих и в холодное время года. Возникает разумный вопрос, зачем использовать для охлаждения парокомпрессионный цикл, если за бортом и без того холодно. Ответ приходит сам собой — следует теплоноситель напрямую охлаждать уличным воздухом. В системе холодоснабжения наиболее распространен температурный график 7/12 °С, а, значит, теоретически, при уличных температурах ниже 7 °С уже возможно использовать свободное охлаждение. На практике, из-за недорекупераци, область применения несколько сужается — при температуре °С и ниже холодопроизводительность от фрикулинга достигает номинальных значений.

Тепловой насос — это режим работы чиллера “на отопление”. Парокомпрессионный цикл работает несколько в иной последовательности, испаритель и конденсатор меняются своими ролями и теплоноситель не охлаждается, а нагревается. Кстати, заметим, что чиллер хоть и холодильная машина, дающая трижды больше холода, чем потребляет, но он ещё более эффективен в качестве отопителя — тепла он даст в четыре раза больше, чем затратит электроэнергии. Режим теплового насоса наиболее распространен в общественных и административных зданиях, иногда применяется для складов и др.

Плавный пуск компрессора — опция, позволяющая избавиться от высоких пусковых токов, превышающих рабочие в 2–3 раза.

Типология чиллеров

Источником холода в водовоздушных системах кондиционирования воздуха является чиллер — водоохлаждающая холодильная машина. Существуют чиллеры различных типов в зависимости от способа охлаждения конденсатора, способа комплектации: моноблочного или с выносным конденсатором, со встроенным гидромодулем или без него, типа компрессора, режима работы (только охлаждение или охлаждение и отопление). Производители чиллеров постоянно модернизируют выпускаемое оборудование на основе новейших технологических и конструкторских разработок.

Номенклатурный ряд выпускаемых чиллеров в последние годы значительно обновился за счет широкого применения новых более эффективных типов компрессоров: спиральных, одновинтовых, двухвинтовых которые в диапазоне малых, средних и больших производительностей постепенно вытесняют поршневые компрессоры. Расширился ряд чиллеров со встроенным гидравлическим модулем, в том числе и с аккумулирующим баком.

Чаще используются в качестве испарителей пластинчатые и поверхностные теплообменники, что дало возможность уменьшить габариты агрегатов и их вес. В последнее время производители начали выпускать чиллеры на экологически безопасных фреонах R407° C, R134А. В зависимости от способа охлаждения конденсатора чиллеры разделяются на чиллеры с воздушным охлаждением конденсатора и чиллеры с водяным охлаждением конденсатора. Наибольшее применение находят чиллеры с воздушным охлаждением конденсатора, когда теплота от конденсатора отводится воздухом, чаще наружным.

Этот способ отвода теплоты требует установки чиллера снаружи здания или применения специальных мероприятий, обеспечивающих такой способ охлаждения. Чиллеры с воздушным охлаждением конденсатора выпускаются в моноблочном исполнении, когда все элементы чиллера находятся в одном блоке, и чиллеры с выносным конденсатором, когда основной блок может устанавливаться в помещении, а конденсатор, охлаждаемый наружным воздухом, размещается вне здания, например на крыше или во дворе. Основной блок соединяется с воздушным конденсатором, установленным снаружи здания, медными фреонопроводами.

Моноблочные чиллеры

Чиллеры с осевыми вентиляторами

Чиллеры в моноблочном исполнении выпускаются с осевыми вентиляторами и с центробежными вентиляторами. Осевые вентиляторы не могут работать на вентиляционную сеть, поэтому чиллеры с осевыми вентиляторами должны устанавливаться только снаружи здания, при этом ничто не должно мешать поступлению воздуха в конденсатор и выбросу его вентиляторами. Чиллеры с осевыми вентиляторами могут изготавливаться в различных вариантах исполнения: 1 — стандартный, 2 — с полной регенерацией теплоты, 3 — с частичной регенерацией теплоты, 4 — для охлаждения водного незамерзающего раствора этиленгликоля в диапазоне рабочих температур от +4°С до −7°С.

Возможно исполнение чиллера с дополнительным способом регулирования холодопроизводительности. При вариантах исполнения чиллеров 1, 3 теплота конденсации передается наружному воздуху и безвозвратно теряется. При вариантах исполнения чиллеров 2 и 4 устанавливаются дополнительные кожухотрубные теплообменники, дублирующие конденсатор полностью в варианте R (использование 100% теплоты конденсации для нагревания воды) или частично (использование 15% теплоты конденсации для нагревания воды).

При варианте 4 дополнительный кожухотрубный конденсатор устанавливается на нагнетательной линии после компрессора перед основным воздушным конденсатором. Конфигурация чиллера может быть: ST-стандартная; LN — с пониженным уровнем шума, что достигается устройством звукопоглощающего кожуха для компрессора и понижением скорости вращения осевого вентилятора конденсатора по сравнению со стандартной конфигурацией; EN — со значительным снижением уровня шума, что достигается устройством звукопоглощающего кожуха для компрессора, увеличением площади живого сечения конденсатора для прохода воздуха и понижением скорости вращения осевого вентилятора, а так же установкой компрессора на пружинные антивибрационные опоры, применением гибких вставок на нагнетательных и всасывающих трубопроводах холодильного контура.

Требования по уровню звуковой мощности, создаваемой работающим чиллером с осевыми вентиляторами при установке за пределами здания могут быть не очень высокими, если отсутствуют особые требования по уровню шума в застройке, где это здание расположено. Если такие ограничения имеют место, необходимо выполнить расчет уровня звукового давления в помещении шума, излучаемого чиллером, и при необходимости применить чиллеры специальной конфигурации.

Чиллеры с центробежными вентиляторами

Чиллеры с центробежными вентиляторами предназначены для установки внутри здания. Основные требования к этим блокам: компактность и низкий уровень шума, связанные с установкой внутри помещения. В чиллерах данного типа используются центробежные вентиляторы с низкой скоростью вращения, большая часть типоразмеров малой и средней производительности имеет спиральный компрессор, отличающийся низким уровнем шума, в типоразмерах с герметичным поршневым компрессором он помещен в специальный звукоизолирующий кожух. Боковые панели корпуса таких чиллеров имеют звукопоглощающее покрытие изнутри, предусмотрена возможность наряду со стандартной конфигурацией ST, конфигурации SC с низким уровнем шума, где полугерметичный поршневой компрессор помещен в шумопоглощающий кожух и имеются гибкие вставки на нагнетательном и всасывающем трубопроводах холодильного контура.

При выборе данного типа чиллера и его размещении следует обеспечить свободный подвод охлаждающего воздуха к чиллеру и отвод воздуха, нагретого в конденсаторе. Это осуществляется с помощью всасывающих и нагнетательных воздуховодов, при этом образуется вентиляционная сеть, состоящая из центробежного вентилятора, воздухонагревателя (конденсатор чиллера), воздуховодов, заборной и выпускной вентиляционных жалюзийных решеток. Размеры последних подбираются на основе рекомендуемых скоростей движения воздуха в сечении решеток и воздуховодов.

Необходимо на основе аэродинамического расчета определить потери давления в вентиляционной сети. Потери давления в вентиляционной сети должны соответствовать давлению, развиваемому центробежным вентилятором, при значении расхода воздуха, охлаждающего конденсатор. Если давление центробежного вентилятора меньше, чем потери давления в вентиляционной сети, возможно применить более мощный электродвигатель к центробежному вентилятору по специальному заказу. Воздуховоды должны присоединяться к чиллеру при помощи гибких вставок, чтобы вибрация не передавалась на вентиляционную сеть.

Производительность чиллеров

В зависимости от производительности чиллеры комплектуются тремя типами компрессоров:

  • спиральными компрессорами для малой (в последнее время произошло смещение в сторону средней) производительности,
  • одновинтовыми компрессорами для средней и большой производительности и двухвинтовыми компрессорами для средней производительности,
  • герметичными поршневыми компрессорами для малой производительности и полугерметичными поршневыми компрессорами для средней производительности.

Спиральные и винтовые компрессоры как более эффективные в определенном диапазоне производительности по сравнению с поршневыми заменяют постепенно последние. Чиллеры выпускаются в двух исполнениях: работающими только в режиме холодильной машины и работающими в двух режимах: холодильной машины и теплового. В чиллерах с воздушным охлаждением конденсатора, в которых предусмотрена работа в режиме теплового насоса, предусмотрено реверсирование холодильного цикла, в чиллерах с водяным охлаждением предусмотрено реверсирование по водяному контуру.

Энергосберегающие технологии в чиллерах

При разработке современного климатического оборудования особое значение уделяется проблеме энергосбережения. В Европе количество энергии, потребляемой оборудованием в течение годового цикла эксплуатации, является одним из основных критериев для принятия решения при рассмотрении предложений, представленных на тендер. На сегодняшний день существенным потенциалом для повышения энергоэффективности является разработка и создание климатической техники, способной как можно точнее покрывать график нагрузки при постоянно меняющихся условиях работы. Например, согласно исследованиям, проведенным фирмой Clivet, колебания средней величины нагрузки на систему кондиционирования в течение сезона составляют до 80%, в то время как работа на полную мощность необходима всего лишь несколько дней в году.

В то же время, суточный график тепловых избытков имеет также неравномерный характер c явно выраженным максимумом. Традиционно в чиллерах мощностью 20–80 кВт устанавливают два одинаковых компрессора и делают два независимых холодильных контура. В результате агрегат способен работать в двух режимах на 50% и 100% своей номинальной мощности. Новое поколение чиллеров с холодильной мощностью от 20 до 80 кВт позволяет выполнять трехступенчатое регулирование производительности. В этом случае полная холодильная мощность распределяется между компрессорами в соотношении 63% и 37%. У чиллеров нового поколения оба компрессора включены параллельно и работают на один холодильный контур, то есть имеют общий конденсатор и испаритель. Такая схема значительно увеличивает коэффициент преобразования энергии (КПЭ) холодильного контура при работе с неполной нагрузкой. Для таких чиллеров при 100% нагрузке и температуре наружного воздуха 25°С КПЭ = 4, а при работе на 37% КПЭ = 5. Учитывая то, что 50% времени чиллер работает с нагрузкой 37% это дает существенную экономию энергии.

Микропроцессорные контроллеры для чиллеров

Для эффективной реализации нового решения на чиллеры устанавливаются микропроцессорные контроллеры, которые позволяют:

  • контролировать все рабочие параметры оборудования;
  • регулировать установленное значение температуры воды на выходе из чиллера в соответствии с параметрами наружного воздуха, технологическими процессами или командами от централизованной системы управления (диспетчеризации);
  • осуществлять выбор оптимального шага регулирования мощности;
  • в случае реальной необходимости быстро и эффективно выполнять цикл размораживания (для моделей с тепловым насосом).

В результате автоматически происходит минимизация кратковременных включений компрессора, оптимизация времени работы компрессоров и корректировка параметров воды на выходе из чиллеров в соответствии с реальными потребностями. Как показали проведенные испытания, в среднем, в течение суток происходит всего 22 ключения компрессоров, в то время как компрессора обычных чиллеров включаются 72 раза.

Среднегодовой КПД чиллера достигает 6, а экономия электроэнергии, при применении современных чиллеров вместо обычных, составляет 7,5 кВт•час на 1 м2 площади обслуживаемого объекта за сезон, или 35%. Еще одно важное преимущество, которое дает применение новых чиллеров, состоит в том, что исчезает необходимость установки громоздких аккумулирующих баков, а встроенный в корпус чиллера циркуляционный насос позволяет обойтись без дополнительной насосной станции.

Энергоэффективные компрессоры для чиллеров

Как известно, для точности выполнения графика нагрузки чиллеров большое значение имеет тип используемых компрессоров. Традиционно в чиллерах большой мощности применялись поршневые или винтовые компрессоры. Поршневой компрессор имеет большое количество движущихся частей и, как следствие, низкую эффективность из-за больших потерь на трение. В процессе эксплуатации поршневых компрессоров возникает высокий уровень шума и вибрации, а также существует необходимость их регулярного обслуживания. Винтовые компрессоры, в свою очередь, имеют сложную конструкцию, и, как следствие, очень высокую стоимость. Производство винтовых компрессоров оказывается низкорентабельным. Обслуживание подобных компрессоров трудоемко и требует высокой квалификации персонала.

В последние годы на рынке появились новые компрессора типа SCROLL, которые лишены характерных недостатков поршневых и винтовых компрессоров. Scroll-компрессоры обладают высокой энергетической эффективностью, низким уровнем шума и вибраций и не нуждаются в обслуживании. Этот тип компрессоров прост по конструкции, очень надежен и, вместе с тем, недорог. Однако, производительность Scroll-компрессоров, как правило, не превышает 40 кВт.

Применение в современных чиллерах множества небольших, но очень надежных компрессоров типа Scroll, а также нескольких холодильных контуров, позволило получить очень «маневренный» чиллер, который способен с высокой точностью выдавать требуемую холодильную мощность. Очевидно, что применение такого чиллера делает ненужным установку насосной станции, а широкий выбор встраиваемых в корпус чиллера насосов разной производительности решает все вопросы, связанные с циркуляцией охлажденной воды. Особо следует выделить очень маленькие пусковые токи нового оборудования. Ведь пуск небольших Scroll-компрессоров, имеющих низкое электропотребление, происходит поочередно, в соответствии с возрастанием нагрузки на агрегат.

У всех чиллеров последних поколений современная микропроцессорная система управления позволяет регулировать установленное значение температуры воды на выходе из чиллера в соответствии с параметрами наружного воздуха, технологическими процессами или командами от централизованной системы управления (диспетчеризации). С экономической точки зрения, использование большого числа Scroll-компрессоров и установка встроенного циркуляционного насоса вместо отдельной насосной станции оказывается более выгодным вариантом, чем применение дорогих, мощных и сложных полугерметичных компрессоров.

Схемы подключения чиллеров

Такого многообразия схем подключения, как у  чиллеров, не имеет ни одна система кондиционирования  воздуха. Это объясняется тем, что охлаждение с помощью чиллера, пожалуй, является одним из самых старейших и распространенных способов, который применяется не только в кондиционировании воздуха, но и в сегменте среднего и низкого холода.

В состав чиллера входит холодильная машина со всеми основными элементами: компрессор, конденсатор, дросселирующее устройство и испаритель. В зависимости от холодопроизводительности и типа, чиллер может комплектоваться различными дополнительными вспомогательными элементами. Другим основным элементом чиллера является гидромодуль. Именно он обеспечивает циркуляцию  холодной/нагретой  жидкости через фэнкойлы или какие-либо другие устройства. Также, в зависимости от требований пользователя, гидромодуль может иметь дополнительные элементы. Обязательно в нем должны быть: расширительный бак, циркуляционный насос, сетчатый фильтр, виброгасители и запорная, регулирующая арматура. К ней относятся запорные, соленоидные вентили, воздушные, предохранительные клапаны – т.е. элементы, отвечающие за эффективность и безопасность работы гидромодуля.    В случае недостаточного объема жидкости в гидравлическом контуре, необходимо применение аккумулирующего бака, который может быть встроен в гидромодуль.

Схема с конденсатором воздушного охлаждения с осевым вентилятором

Самый распространенный и продаваемый тип холодильных машин для охлаждения жидкости – это моноблочные чиллеры с конденсатором воздушного охлаждения с осевым вентилятором, и  в качестве холодо/теплоносителя  используется вода. Расположение чиллера обязательно должно быть на открытом воздухе – крыша зданий или место рядом со зданием на земле. При этом чиллер с гидромодулем могут быть расположены либо в разных корпусах, либо в одном корпусе. Такая схема подключения чиллера успешно работает на охлаждение в летний период. Однако на зимний период воду необходимо сливать, а летом вновь заправлять. Именно такая процедура и является главным недостатком данной схемы подключения, так как подобные работы требуют высокой квалификации специалистов и ответственности при проведении работ.

Схема с воздушным конденсатором

Если есть необходимость работы чиллера зимой на тепло, а летом на холод и в гидравлическом контуре должна циркулировать вода, то возможна схема подключения чиллера с воздушным конденсатором. Конденсатор же должен быть выносной, установленный на открытом воздухе. Все остальные части чиллера располагаются в теплом помещении. При такой схеме сохраняются все положительные моменты предыдущей схемы, и устраняется негативный момент, который связан со сливом воды на зиму. Все же недостатки есть. Так как конденсатор выносной, то часть холодильного контура, которая идет от чиллера до конденсатора, имеет ограничения по длине трассы и перепаду высот. 

Схема с конденсатором водяного охлаждения

Более универсальная схема установки чиллера, способная работать и в зимний и летний период время с заправкой водой, – это схема чиллера с конденсатором водяного охлаждения. При такой схеме сам чиллер и гидромодуль располагаются в теплом помещении, и на его работу не влияет температура наружного воздуха. Это очень важный фактор в работе чиллера, так как исключается замерзание воды в гидравлическом контуре, и нет необходимости сливать воду в зимний период. Но для охлаждения воды, которая обеспечивает работу и конденсацию холодильного агента в конденсаторе, необходим дополнительный водяной контур от конденсатора до “сухого охладителя”. Такая схема более сложная, громоздкая и все это увеличивает его стоимость относительно схемы с конденсатором воздушного охлаждения.

Схема с воздушным конденсатором и центробежным вентилятором

Схема чиллера с воздушным конденсатором и центробежным вентилятором позволяет обойти все ограничения, связанные с  удлинением трубопроводов для холодильного и  гидравлического контуров, с необходимостью слива и т.п.. Установка самого чиллера и гидромодуля возможна в теплом помещении. Но так как конденсатор с воздушным охлаждением, то ему нужен наружный воздух. Воздух приходится подавать на обдув конденсатора по воздуховодам и отводить тоже по воздуховодам. В зимнее же время для поддержания в помещении постоянной температуры воздуха следует обеспечить систему автоматики для регулирования подачи холодного наружного воздуха или его перекрытия. Схема применяется редко, в основном из-за высокой стоимости и сложности подачи наружного воздуха и его регулирования через воздуховоды. 

Схема с промежуточным теплообменником

Как известно, стандартно выпускаемые чиллеры рассчитаны на работу с очень ограниченным диапазоном температур холодо/теплоносителя на входе и выходе теплообменника испарителя. Не всегда такие показатели температур устраивают потребителей. В таком случае используется промежуточный теплообменник, в котором происходит доведение температуры холодо/теплоносителя до заводских стандартных  значений, а уже потом он поступает непосредственно в чиллер. Схема подключения чиллера с промежуточным теплообменником чаще всего применяется в производственных целях, где есть необходимость охладить очень горячую среду до заданных температур. Имеются и недостатки такой схемы. Появляется второй гидравлический контур, дополнительный циркуляционный насос. Чиллеры, работающие по такой схеме, изготавливаются заводом-производителем под заказ, и стоят намного дороже. В основном потребитель сам производит расчеты и подбор промежуточного теплообменника. Часто такие расчеты достаточно приблизительные и могут дать отклонения температурного режима работы самого чиллера, а это, в свою очередь, может привести к появлению различных неисправностей.

Схема параллельного подключения

Холодопроизводительности чиллеров колеблются в больших пределах  – от 16 кВт и до 7000 кВт. Чем больше производительность, тем более сложным и дорогим компрессором комплектуется чиллер. Очень часто подбор оборудования производится таким образом, что требуемая суммарная холодопроизводительность разделяется на несколько частей, что позволяет уменьшить минимальную необходимую нагрузку на каждую холодильную машину, и, таким образом,  в проектах находит применение более сложная схема параллельного подключения чиллеров.  Параллельное подключение применяется также, если есть необходимость обеспечения резервирования или ротации чиллеров. Идеальным вариантом является параллельное подключение чиллеров одинаковой производительности. В случае разной их производительности появляется необходимость сбалансировать работу чиллеров, исходя из требуемых расходов холодо/теплоносителя. Подобная схема сложна тем, что необходимо всегда обеспечивать равномерную подачу холодо/теплоносителя для обоих чиллеров, в случае их одновременной работы, обеспечения автоматического резервирования или ротации. 

 Преимущества и  недостатки чиллеров

 Преимущества

По сравнению со сплит-системами, в которых между холодильной машиной и локальными узлами циркулирует газовый хладагент, системы чиллер-фэнкойл обладают преимуществами:

  • Масштабируемость. Количество фэнкойлов (нагрузок) на центральную холодильную машину (чиллер) практически ограничено только её производительностью.
  • Минимальный объём и площадь. Система кондиционирования крупного здания может содержать единственный чиллер, занимающий минимальный объём и площадь, сохраняется внешний вид фасада за счет отсутствия внешних блоков кондиционеров.
  • Практически не ограниченное расстояние между чиллером и фэнкойлами. Длина трасс может достигать сотен метров, так как при высокой теплоёмкости жидкого теплоносителя удельные потери на погонный метр трассы намного ниже, чем в системах с газовым хладагентом.
  • Стоимость разводки. Для связи чиллеров и фэнкойлов используются обыкновенные водяные трубы, запорная арматура и т. п. Балансировка водяных труб, то есть выравнивание давления и скорости потока воды между отдельными фэнкойлами, существенно проще и дешевле, нежели в газонаполненных системах.
  • Безопасность. Потенциально летучие газы (газовый хладагент) сосредоточены в чиллере, устанавливаемом, как правило, на воздухе (на крыше или непосредственно на земле). Аварии трубной разводки внутри здания ограничены риском залива, который может быть уменьшен автоматической запорной арматурой.

Недостатки

  • Системы чиллер-фэнкойл, в строгом смысле, не являются системами вентиляции — они охлаждают воздух в каждом кондиционируемом помещении, но никак не влияют на циркуляцию воздуха. Поэтому для обеспечения воздухообмена системы чиллер-фэнкойл комбинируются с воздушными (крышными) системами кондиционирования, холодильные машины которых охлаждают наружный воздух и подают его в помещения по параллельной системе принудительной вентиляции.
  • Будучи более экономичными, чем крышные системы, системы чиллер-фэнкойл безусловно проигрывают в экономичности VRV и VRF-системам. Однако стоимость VRV-систем остаётся существенно выше, а их предельная производительность (объёмы охлаждаемых помещений) — ограничены (до нескольких тысяч кубометров).
  • Некоторые аспекты проектирования холодоснабжения
  • Холодильная машина — это габаритное (все три измерения заметно превышают метр, а длина может превзойти и 10м) и тяжелое (до 15 тонн) оборудование. На практике это означает практически безоговорочную необходимость в применении разгрузочных рам для распределения массы чиллера на большую площадь с выбором допустимых точек опоры. Стандартные рамы далеко не всегда подходят для каждого конкретного случая, поэтому, чаще всего, требуется специальное проектирование.
  • Чиллер ВМТ-Ксирон имеет в составе 1–4 компрессора, 1–12 вентиляторов, 1–2 насоса, что вызывает целую гамму негативных вибраций, поэтому, установка чиллера непременно производится на виброопоры соответствующей несущей способности, а подсоединение всех трубопроводов — через вибровставки соответствующего диаметра.
  • Как правило, подсоединительные диаметры трубопроводов у чиллера меньше, чем магистральной трубы (чаще на один, иногда и на два типоразмера), поэтому требуется переход. Рекомендуется непосредственно у чиллера установить вибровставку и сразу следом — переход. Из-за значительных гидравлических потерь удалять переход от агрегата не рекомендуется.
  • Во избежание засорения испарителя со стороны теплоносителя на входе в чиллер обязательным является установка фильтра.
  • В случае встроенного гидромодуля, на выходе из чиллера обязательно наличие обратного клапана во избежание движения воды против проектного.
  • Для регулирования прямого и обратного потоков рекомендуется перемычка между ними с регулятором перепада давления.
  • Наконец, в документации всегда следует обращать внимание, для какого теплоносителя приведены данные. Применение незамерзающего теплоносителя в среднем на 15-20% снижает эффективность работы системы холодоснабжения.

По теме:

Выносные конденсаторы систем кондиционирования воздуха